
The future of
Programming

Looking back to look
ahead

PROGRAMMING

1940s

20XX

1936

1939: The Bombe

1942 Collosus

1945 ACE

1945: 
 Mercury Delay Lines

1945: CRT Memory

1945
Turing writes code. 
* In binary. (base 32 reversed)  
* Uses integer ‘add’ and logical ‘not’.  
* Invents subroutine
* Invents and codes stack
* Invents floating point  
* Etc.

1945

“We shall need a great number of
mathematicians of ability” because “there

will probably be a good deal of work of this
kind to be done.”

1945

“One of our difficulties will be the
maintenance of an appropriate discipline, so

that we do not lose track of what we are
doing.”

Mathematicians of Ability.
A Great Number.

Appropriate Discipline.

1945

Number of computers  
in the world:

O(1)

1945

Number of programmers
in the world:

O(1)

1950s

1950s

1953 Fortran
C AREA OF A TRIANGLE WITH A STANDARD SQUARE ROOT FUNCTION
C INPUT - TAPE READER UNIT 5, INTEGER INPUT
C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
C INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING
 READ INPUT TAPE 5, 501, IA, IB, IC
 501 FORMAT (3I5)
C IA, IB, AND IC MAY NOT BE NEGATIVE
C FURTHERMORE, THE SUM OF TWO SIDES OF A TRIANGLE
C IS GREATER THAN THE THIRD SIDE, SO WE CHECK FOR THAT, TOO
 IF (IA) 777, 777, 701
 701 IF (IB) 777, 777, 702
 702 IF (IC) 777, 777, 703
 703 IF (IA+IB-IC) 777,777,704
 704 IF (IA+IC-IB) 777,777,705
 705 IF (IB+IC-IA) 777,777,799
 777 STOP 1
C USING HERON'S FORMULA WE CALCULATE THE
C AREA OF THE TRIANGLE
 799 S = FLOATF (IA + IB + IC) / 2.0
 AREA = SQRT(S * (S - FLOATF(IA)) * (S - FLOATF(IB)) *
 + (S - FLOATF(IC)))
 WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA
 601 FORMAT (4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,F10.2,
 + 13H SQUARE UNITS)
 STOP
 END

1958 - LISP

Functional Programming

1954-1960
IBM sold 140 model
70x computers.  

Fortran  
Lisp.

1960

Number of computers  
in the world:

O(1E2)

1960

Number of programmers
in the world:

O(1E3)

1950s

• Programmers were drawn from:

• Engineers

• Scientists

• Mathematicians

1965
10,000 1401s.  
Rented for $2,500/mo ($20K today).

This put the 1401 in reach of many
businesses who eagerly bought them.

1965

Number of computers  
in the world:

O(1E4)

1965

Number of programmers
in the world:

O(1E5)

Looking back to look
ahead

Programmers

1945:
1

1965:  
100,000

I am 13

I am 13

1965

• Not Enough:

• Engineers, Scientists, Mathematicians

• No CS Grads.

• Programmers drawn from:

• Best and brightest

• Accountants, Planners, etc.

1965

Experienced, Disciplined, Professionals.

Though not mathematicians, they were:

Turing would likely have approved.

1966

1,000 360s  
every month.

1966 - Simula-67

Object Orientation

Ole-Johan
Dahl

Kristen
Nygard

1968 - GOTO
Edsger

Dijkstra

Structured
Programming

1968 - C

Ken
Thompson

Dennis
Ritchie

1970

50,000
PDP8s

1970

Number of computers  
in the world:

O(1E5)

1970

Number of programmers
in the world:

O(1E6)

Looking back to look
ahead

Programmers

1945:
1

1970:  
1,000,000

1970

Hundreds of thousands of computers.  

A million programmers.
 
 

Who were they?

1970

Tens of thousands of new CS & EE Grads.  
 

They all had something in common.  
 

We were all young.  
 

We were almost all male.

1970

At my first job there were ~24 programmers.
  

Most were in their thirties or forties;
 

and half were women.

1980

My employer had ~50 programmers.  
 

All in their twenties or early thirties.  
 

Two were women.

The demographics of programming had decisively
shifted towards young men.  

Hundreds of thousands of very young men.

typically not what Turing would have thought
of as “disciplined mathematicians”.

But businesses had to have programmers.

What very young men lack in discipline,
they make up for in energy.

And they’re cheap.

Now remember:
• Up to now programmers were

disciplined professionals.

• They didn’t need a lot of management
or process.

• They knew how to manage their time,
communicate, and work together.

• They understood deadlines &
commitments. What to leave in and
what to leave out.

Those Disciplined
Professionals had
worked miracles

• IBM 360 Virtual Memory OS.

• NASA: Mercury, Gemini, Apollo

• Structured, Functional, Object-Oriented.

• Fortran, Cobol, Algol, Lisp, C, Unix.

Those original programmers 
 

Knew how to get big things done.

Agile:

The process used by  
disciplined professionals

observed in the wild.

But hoards of young testosterone driven men need
discipline imposed upon them from above.  

 
They need close management and a fixed process.  

 
 

They need:  
 
 

Waterfall.

Looking back to look
ahead

Process

1945:  
None

1970:  
Waterfall

Looking back to look
ahead

The Waterfall era

1970

2000

1970-1995

Number of programmers doubles every five years.  
 

Tens of millions of programmers.  
 

Half of whom have less than five years experience.

1995

• Original cohort of disciplined
professionals retires.

• The first wave of career programmers
comes of age (well over 40).

• We foresee the need for change.

1995

• Scrum: Schwaber, Beedle, DeVos, et. al.

• XP: Beck, Cunningham

• FDD: Coad.

• Crystal: Cockburn

2001

2001: Snowbird  
Agile Manifesto

Agile requires
Discipline

• Working in fixed time boxes.

• Estimating in relative units.

• Customer communication.

• Continuous integration.

• Collaboration.

• And so much more.

Extreme Programming

• The most technical disciplines

• TDD

• Refactoring

• Simple Design

• Acceptance Tests

• Metaphor

XPMany of us felt that these technical disciplines were the
glue that made the whole agile process work properly.

Without those technical - dare I say

mathematical disciplines,

the code being produced would grow and evolve in
ways that made it harder and harder to work with.

“lose track of what we are doing”

Business understands
Discipline

Rapid Adoption of Scrum

But Business doesn’t
understand us.

• So they can’t
evaluate,
endorse, or
approve any
technical
practices.

Worse, programers do
not agree.

Flaccid Scrum

An efficient business
discipline coupled to an

undisciplined engineering
team will very rapidly

make a mess.

Agile Split

Agile: 
Business Practices

Craftsmanship:  
Technical Practices

Irony

Kent Beck at Snowbird stated a goal for Agile:  
 

Healing of the divide between
business and programming.

Agile Split

Agile: 
Business Practices

Craftsmanship:  
Technical PracticesFAIL!

It’s time for us to:

• Grow Up.

• Define our profession.

• Choose our practices and disciplines.

• Reunify Agile/Craftsmanship.

Because we are headed
towards a disaster

Civilization depends upon us.  
 

in ways it doesn’t yet understand.

In ways we don’t yet understand.

WE  
RULE 
THE 

WORLD

TENS OF THOUSANDS DIE  
IN SOFTWARE CATASTROPHE

HOW
COULD
YOU…

…HAVE 
LET 

THIS  
HAPPEN?

CONGRESS PASSES SWEEPING  
SOFTWARE REGULATIONS

The FUTURE of

PROGRAMMING

1940s

20XX

Uncle Bob
unclebob@cleancoder.com

cleancoder.com

cleancoders.com - Videos
@unclebobmartin

mailto:unclebob@objectmentor.com
http://cleancoder.com
http://cleancoders.com

The Professional’s
Oath

I will not produce harmful code.

I

The code that I produce will always
be my best work.  

 
I will not knowingly release code

that is defective either in
behavior or structure.

II

I will provide, with each release,
a quick, sure, and repeatable proof

that every element of the code
works.

III

I will make frequent, small,
releases. I will not impede

progress.

IV

I will fearlessly and relentlessly
improve the code at every

opportunity.  
 

I will never make the code worse.

V

I will keep productivity high.

I will do nothing that decreases
productivity.

VI

I will continuously ensure that
others can cover for me, and that I

can cover for them.

VII

I will produce estimates that are
honest both in magnitude and

precision.  
 

I will not make promises without
certainty.

VIII

I will never stop learning and
improving my craft.

IX

