Using Async - Await in C#
as Designed

Please take the two paper handouts up front while they last
or online at
https://bit.ly/2]JjQnHR
or
https://github.com/keithdv/AsyncAsDesigned/blob/master/Handout.pdf

©OO0



Keith Voels

* Application Architect — Ecolab
* .NET Developer — 15 years

* Email: keithvoels@gmail.com

* GitHub

* https://github.com/keithdv/AsyncAsDesigned
* All code presented today is available

e LinkedIn
» www.linkedin.com/in/keith-voels-b6569586

5/4/2020 2018 © Keith Voels - Attribution-NonCommercial-ShareAlike CC BY-NC-SA @@@@
https://creat ivecommons .org/licenses /by-nc-sa/4.0/ BY NG SA


mailto:keithvoels@gmail.com
https://github.com/keithdv/AsyncAsDesigned
http://www.linkedin.com/in/keith-voels-b6569586

Async - Await as designed - Goals

e Significant performance benefit

* Part of a bigger picture — Task-Based Asynchronization
Programming

* What are ExecutionContext and SynchronizationContext and
why should | care?

* Code Examples



Agenda

* Async - Await Server Performance

» System.Threading.Tasks - Task-Based Asynchronous Programming

e Understanding the role of ExecutionContext, SynchronizationContext
and ConfigureAwait

e Code Examples



Async - Await — Why use it?

* So why learn it and use it?

* Provides significant performance gains running server-side code by
reducing thread contention.

* Demo: Async - Await Application Server Throughput



Async - Await — Why use it?

5/4/2020 2018 © Keith Voels - Attribution-NonCommercial-ShareAlike CC BY-NC-SA @@@@
https://creativecommons.org/licenses/by-nc-sa/4.0/ By NG oA



Agenda

* Async - Await Server Performance

e System.Threading.Tasks - Task-Based Asynchronous Programming

e Understanding the role of ExecutionContext, SynchronizationContext
and ConfigureAwait

e Code Examples



System.Threading.Tasks — Tasks vs Async - Await

* Understanding Async - Await means understanding Task-Based Asynchronous
Programming.

* Tasks is a namespace.
* Provides the behaviors for TAP design pattern

* Task is a class
* Instantiated and garbage collected like any other object

* Async - Await are keywords
 Makes TAP code shorter, easier to read.

* Asynchronous code reads like synchronous code

* Analogous to ? and Nullable
* ?isthe keyword and Nullable is the namespace and behavior.



System.Threading.Tasks - Task-Based Asynchronous Programming (TAP)

* A task represents the initiation and completion of an asynchronous operation

* Delegate + Execution = Task

Delegates Execution
* Delegate e Status
* ContinueWith * Exception

e Task<T>.Result
e Execution Context (Hidden)



System.Threading.Tasks — TAP as Designhed

* The design pattern is Task-Based Asynchronous Programming (TAP)
* It is natural, even expected, for TAP to spread throughout your code

* An instance of Task is like an instance of any other class

* Always handle the returned Task from an awaitable method or it may not be
executed and exceptions will be lost

* Task.Run() and await keyword don’t always cause additional threads
to be created. They are scheduled on the Task Scheduler.

* In fact, TAP reduces the number of threads created by allowing the
thread pool to decide when to continue and on which thread.

e https://msdn.microsoft.com/en-us/library/mt674882.aspx

e https://msdn.microsoft.com/en-us/magazine/jj991977.aspx - Stephen Cleary



https://msdn.microsoft.com/en-us/library/mt674882.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx

Agenda

* Async - Await Server Performance

» System.Threading.Tasks - Task-Based Asynchronous Programming

* Understanding the role of ExecutionContext,
SynchronizationContext and ConfigureAwait



Understanding ExecutionContext, SynchronizationContext and
ConfigureAwait — TAP Challenges

* A Task that can be executed by any thread brings challenges.

* Thread Local Storage
* No longer a valid location to source flow information like identity and culture.

e Solution: ExecutionContext
e Store flow critical information in a container and link it to the Task.

e System.Threading.Thread.CurrentThread.CurrentCulture =>
* System.Threading.Thread.CurrentThread.ExecutionContext.CurrentCulture

* Ul Thread
» Ul Controls are not thread safe and can only be interacted with while on the Ul thread.
* Solution: SynchronizationContext
* Execute on the Task’s continuation on the captured environment (i.e. thread).
* Abstraction so that platforms that don’t have a Ul thread can provide their own behavior.

e Put Simply: Move from Thread Local Storage to the Call Stack




Understanding ExecutionContext, SynchronizationContext and
ConfigureAwalt — Top Level Description

* Execution Context: Critical Objects like Culture, Identity, Permissions
e Critical - Leave it alone!

* Synchronization Context: Ul apps must continue on the same thread
e Optional — Ul Applications need it. Others do not.
* Ul: .ConfigureAwait(true) => Continue on the Ul thread. (Default)
 Non — Ul : .ConfigureAwait(false) => Any Thread

* Note: Also SynchronizationContext.Current == null



Understanding ExecutionContext, SynchronizationContext and
ConfigureAwait — Code

WPF / Forms

// Use ONLY for Ul events with signatures that do not allow 'async Task'
public async void AsyncAwaitExercisel_Click(object sender, RoutedEventArgs e){

await AsyncMethod()-ConfigureAwait{false);
}
public async Task ITouchUIComponents_AsyncMethod(){
await AsyncMethod()-ConfigureAwait{false);
}
ASP.NET

// Do not use async void outside of WPF / Forms

oid-AsvneAw a obie

public async Task AsyncMethod(){
await AsyncMethod().ConfigureAwait(false); // Performance improvement, optional for .NET Core

}
Library

// Do not use

public async Task AsyncMethod(){

await AsyncMethod().ConfigureAwait(false); // Required to make use in WPF/Forms guaranteed to not block

geeo



Understanding ExecutionContext, SynchronizationContext and

ConfigureAwait

Execution Context
* Required; Down Call Stack

* Provides a single container for
all information relevant to the
logical thread of execution.

* Framework captures the EC at
each asynchronous fork.

e Cannot be suppressed.*

e Accessed
using Thread.ExecutionContext
and Task.ExecutionContext

Synchronization Context
* Optional; Up Call Stack

e Captured Location; Environment

* Abstraction to queue work on a
particular location (i.e. Ul
Thread)

* Framework calls SC.Post at eac
continuation.

* May be suppressed with
.ConfigureAwait(false) or
SC.Current == null



Understanding ExecutionContext, SynchronizationContext and
ConfigureAwait — Code Demo Setup

Await Await Await
AsyncAwait_A() AsyncAwait_B() AsyncAwait_C()
Thread 1
> O
ExecutionContext
> o
A
Task B.EC = EC.Capture() /. Task C.EC = EC.Capture() /‘«
1 Logical Execution Flow ;| 3 415 6 -
- : (4 8$ 7:,': Task.Delay()
Task B.EC.Run()~_ | Task C.EC.Run()~_ .
C \ ® \
Thread 1 Thread 1 Thread 1 ,
° < e f ® f DispatcherSync...Context
Task B.EC.SC.Post() Task C.EC.SC.Post()
Or
o <€ o €| < ConfigureAwait(false) Or
Any Thread Any Thread Any Thread Sync...Context.Current = Null
5/4/2020 R A () OICLO) 17




Conclusion

e Email: KeithVoels@gmail.com
e GitHub: keithdv

* Links
» [Video] The zen of async: Best practices for best performance — Microsoft Tech Ed

* https://www.youtube.com/watch?v=vu2kEstfuc8
* Highly Recommended — Commentary from the Microsoft Team on Async - Await design

e Stephen Toub and Stephen Cleary

* Async and Await - Stephen Cleary
* https://blog.stephencleary.com/2012/02/async-and-await.html

. élsync/Await - Best Practices in Asynchronous Programming - Stephen
eary

* https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
* ExecutionContext vs SynchronizationContext - Stephen Toub

* https://blogs.msdn.microsoft.com/pfxteam/2012/06/15/executioncon
text-vs-synchronizationcontext/

5/4/2020 2018 © Keith Voels - Attribution-NonCommercial-ShareAlike CC BY-NC-SA @@@@ 18
https://creativecommons .org/licenses, /by-nc-sa/4.0/ By NC BA


mailto:KeithVoels@gmail.com
https://www.youtube.com/watch?v=vu2kEstfuc8
https://blog.stephencleary.com/2012/02/async-and-await.html
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://blogs.msdn.microsoft.com/pfxteam/2012/06/15/executioncontext-vs-synchronizationcontext/

