Cryptography 101

Robert Boedigheimer
@boedie
About Me

- Web developer since 1995
- Pluralsight Author
- 3rd Degree Black Belt, Tae Kwon Do
- Microsoft MVP
- Progress Developer Expert - Fiddler

- boedie@outlook.com
- @boedie
- weblogs.asp.net/boedie
Background

• Cryptography is the science of keeping messages secure
• Why Cryptography?
 ▫ **Confidentiality** – protect data from being read
 ▫ Integrity – verify that data was not modified
 ▫ Authentication – identify and validate a user
 ▫ Non-repudiation – sender cannot deny later that he sent a message

• System.Security.Cryptography
Considerations

- What is your goal? (Confidentiality, etc.)
- How much is data worth?
- How long does it need to be secured?
- What are the primary threats?
 - In transit
 - Access configuration files
 - Dump of memory
 - Modify pages
 - Reverse engineer assemblies
 - …
- Company security policies?
- Regulatory compliance?
- Layered defenses, how many are enough?

- Don’t write own!!
.NET Class Suffixes

- ...Cng
 - Wrapper around Cryptography Next Generation (CNG)
 - Active development, newer OS required
- ...CryptoServiceProvider
 - Wrapper around Windows Cryptography API (CAPI)
 - No longer developing but available on older OS
- ...Managed
 - Written entirely in managed code
 - Need .NET framework
 - Not FIPS compliant

- https://tinyurl.com/o2zgbjk
Hash Functions

- One-way function – easy to compute but significantly harder to reverse
- Hash function – converts a variable length input to a fixed length
 - Creates a “data fingerprint” (digest)
 - Ok to see, don’t let it be tampered with
 - Be careful when limited value range!

It is often useful in an ASP.NET site to know for a particular request if the user's session information is still intact (that a timeout has not occurred). One common need is to be able to inform the user why they lost their session.
Hash Algorithms

- Abstract base HashAlgorithm
 - MD5 (128-bit hash)
 - SHA (Secure Hash Algorithm)
 - SHA-1 (160-bit hash)
 - SHA-2
 - SHA256
 - SHA384
 - SHA512
 - KeyedHashAlgorithm
 - HMACSHA1 (up to 512)
 - MACTripleDES

(subset of derived classes shown)
Tamperproof Querystrings

- Goal is to protect **integrity** of querystring
- Use a Hash-based Message Authentication Code (HMAC)
 - Compute the hash of a querystring when constructed
 - Validate querystring was not modified by computing hash with querystring and comparing to original hash
 - Uses a key to ensure that attacker could not create own valid hash
Hashed Passwords

- Considered best practice for passwords since they cannot be retrieved
- Used for authentication

- Common attack against hashed passwords is “dictionary attack”
 - Pre-compute the hash values of an entire dictionary, compare hashed values to hashed password to look for matches
Salted Passwords

• Add some unique random data to each password
• Greatly increases work required to mount a dictionary attack against all passwords, need to pre-compute dictionary hash values for all salt values

• NOTE: This does nothing to increase security for an individual password if salt is easily found! (Add “random data” to do this...)
PBKDF2 (Password-Based Key Derivation Function 2)

- Compute power constantly increasing, so brute force attacks against hash functions are possible
- Add a “work factor” to the calculation based on a number of iterations
 - Set iterations to get acceptable time for login
- Rfc2898DeriveBytes
Terminology

- Plaintext – original data
- Encryption – process of obscuring data
- Ciphertext – encrypted data
- Decryption – process to recover original data

- Cipher – algorithm for performing encryption and decryption
Symmetric Algorithms

- Encryption and decryption use the same (secret) key
- Primary attack is “brute force” key search, try all possible keys
- Key distribution is difficult

- Abstract class SymmetricAlgorithm
 - Rijndael (AES)
 - DES
 - TripleDES
Symmetric Algorithms (cont.)

- .NET symmetric algorithms are “block ciphers”
- Padding – data added to fill to block size
 - Zeros
 - PKC27
 - ISO10126
- Mode
 - ECB
 - CBC (recommend)
- IV (Initialization Vector)
 - Random data used to seed first block
 - Does not need to be secret
 - Never reuse, always unique for each set of data!
Asymmetric Algorithms

- Utilizes two complimentary keys (public key and private key)
- Generally 1,000 times slower than symmetric algorithms
- Often use asymmetric to encrypt a “session” symmetric key

Abstract class AsymmetricAlgorithm
- RSA
- DSA (digital signatures only)
- ECDiffieHellman
Website Encrypting Safely

- Generate an RSA key pair
 - Store only the public key on web servers
 - Store the private key on an internal secured system that needs the data
- Meant for small amounts of data
Digital Signatures

- Provides integrity and non-repudiation
- Hash the contents of a message, sign it (encrypt) with senders private key
- By default, does not provide confidentiality, can encrypt with receivers public key before signing
HTTPS

- Certificate (relies on asymmetric encryption)
 - Server’s **public** key is digitally signed by a Certificate Authority (CA)
- Browser knows “well-known” CA’s and will trust certificates signed by them

- TLS handshake
 - Browser gets server certificate
 - Browser chooses symmetric key to encrypt traffic, encrypts with server’s public key
Key Sizes and Storage

- **Key sizes**
 - Tradeoff performance and security
 - Symmetric AES use 256 bits
 - Asymmetric RSA use 2048 or 4096

- **Key storage**
 - Hardcoded strings are visible if use a disassembler (like ILDASM)
 - Encrypted `<appSetting>` section of web.config
 - Split key in code, registry, and config files
Summary

• Don’t write own!

• Use trusted algorithms and implementations
 ▫ https://tinyurl.com/o2zgbjk

• Use hashing to validate the integrity of data or to prove both know the same secret

• Use symmetric algorithms unless have special needs for asymmetric (digital signatures, key exchange, etc)

• Know threats, choose the proper countermeasures
Resources

- Pluralsight – Introduction to Cryptography
 - https://tinyurl.com/kkn3coq

- Applied Cryptography - Bruce Schneier
- Cryptography Engineering – Ferguson, Schneier, Kohno
- Understanding Cryptography – Paar, Pelzl

- The Code Book – Simon Singh
- The Code-Breakers – Kahn
Questions

• boedie@outlook.com
• @boedie
• weblogs.asp.net/boedie

• Code and slides - https://tinyurl.com/ybygpvdz