
Robert Boedigheimer

@boedie

HTTP/2: What You Need to Know

• Web developer since 1995

• Pluralsight Author

• 3rd Degree Black Belt, Tae Kwon Do

• ASP.NET MVP

• boedie@outlook.com

• @boedie

• weblogs.asp.net/boedie

About Me

• 1991, http://tinyurl.com/5obj3z

• Sir Tim Berners-Lee, CERN

• Text based request/response

• GET (only method) and HTML (only response type)

• Closes connection after response

HTTP 0.9

• 1996, https://tools.ietf.org/html/rfc1945

• “Informational” RFC (not a standard)
▫ Compilation of best practices

• Request/response headers

• Any type of response (images, text file, etc.)

HTTP 1.0

• 1999, https://tools.ietf.org/html/rfc2616

• Persistent Connections (Keep Alive)

• Host Headers

• Chunked transfer encoding

• 100 Continue Status

• HUGE success!

HTTP 1.1

• Tracing tool built specifically for HTTP
▫ Shows complete request and response

▫ Proxy

▫ http://fiddler2.com (free)

• Eric Lawrence (@ericlaw)

• .NET framework needs to support ALPN!! (need for HTTP/2)

Fiddler

• Wasn’t designed for todays web pages
▫ 100+ requests and 2 MB+ for a single page! (Httparchive.org)

• Requires multiple connections

• Head of Line Blocking

• Lack of prioritization

• Verbose headers

Problems with HTTP 1.1

• Single active request/response on a given connection

• Most browsers use up to ~6 connections per host
▫ Uses resources

▫ Takes time to establish and be efficient
 3 way handshake

 TCP Slow Start

Requires Multiple Connections (HTTP 1.1)

• Serial request(s) and response(s)
▫ Slow response blocks all other requests and responses on that connection

• HTTP Pipelining
▫ Submit multiple requests simultaneously

▫ Not used

Head of Line Blocking (HTTP 1.1)

• No direct way to specify desired order of responses

• Browsers need to decide how to best use their limited number of
connections and what to request first
▫ CSS

▫ JavaScript

▫ Images

Lack of Prioritization (HTTP 1.1)

• No header compression

• Repeated headers sent for multiple requests to same host
▫ Cookie

▫ User-Agent

▫ Accept-language

▫ Accept-encoding

▫ Referer

▫ …

Verbose Headers (HTTP 1.1)

• Measured in units of bits
per seconds (bps)

• Relatively easy to add more

Bandwidth

• Measured in milliseconds (ms)

• Time takes for packet to get to destination

▫ Propagation

▫ Transmission

▫ Processing

• Extremely difficult to improve, try to avoid!

Latency

http://tinyurl.com/omyuh3x, Ilya Grigorik

“Bandwidth Doesn’t Matter Much” - http://tinyurl.com/btqpclr

• 2009, Experimental…

• http://tinyurl.com/3nh7rto

• Modifies how requests and responses are sent over the wire

• Required HTTPS

• Features
▫ Single connection

▫ Header compression

▫ Request prioritization

▫ Server Push

SPDY

• IETF (Internet Engineering Task Force) – NOT W3C
▫ http://www.ietf.org/

• HTTP Working Group – HTTPbis
▫ https://httpwg.github.io/

▫ 2012

▫ Initially based on SPDY

• HTTP/2 - May 2015, https://tools.ietf.org/html/rfc7540

• HPACK - May 2015, https://tools.ietf.org/html/rfc7541

HTTP/2 Process

• Minimize impact of latency

• Avoid head of line blocking

• Use a single connection (per host)

• Keep HTTP 1.1 semantics!
▫ Methods, status, headers

• DON’T NEED TO CHANGE APPLICATION CODE!!
▫ Should remove some current workarounds…

HTTP/2 Goals

• Binary framing layer

• Streams
▫ Prioritization and dependencies

• Fully multiplexed on single TCP connection

• Header Compression (HPACK)

• Server Push

HTTP/2 Major Features

• Previously text based protocol
▫ Very easy to review and troubleshoot

• Binary protocols are much easier to parse, less error prone
• Need tool support!

• Frames
▫ Header
▫ Data
▫ …

Binary Framing Layer

• Single request/response
• Bidirectional series of frames
▫ Order of frames is significant
▫ Integer identifier

• Client “priority hints”
▫ Dependencies
▫ Weights

▫ Can be updated at any point

Streams

• HTTP 1.1 browsers use ~6 connections
per host
▫ Serial requests and responses

▫ Need to decide which requests to make
first (HOL blocking)

• Multiplexing of request and response
frames from various streams

• Uses less resources, more efficient

Single TCP Connection (per host)

• https://tools.ietf.org/html/rfc7541

• Techniques
▫ Index value for common headers/values
▫ Indexed list of previously sent headers
▫ Huffman encoding to compress a value

• Static table
▫ Predefined common headers (values)

• Dynamic table
▫ Maximum size

Header Compression (HPACK)

• Future requests the compressed values would not be sent if the same

Header Compression (HPACK) (cont.)

:method GET

:scheme HTTP

:path /

:user-agent …Edge/12.10240

:accept-encoding gzip, deflate

:host twitter.com

:accept-language en-US

:rjb-hdr 14534

2

6

4

58 …Edge/12.10240

16

38 twitter.com

17 en-US

63 rjb-hdr

64 14534

• Server can anticipate what client will need next
▫ How?

• Same origin restrictions

• “Better Inlining”
▫ Resources are cacheable
▫ No added page weight
▫ Client can reject (RST_STREAM)

• Experimental…

Server Push

• NOT required in HTTP/2 RFC
▫ TLS 1.2+

▫ Blacklist of cipher suites

• Most browsers will only implement with HTTPS
▫ Avoid problems with new protocol and “middleboxes”

 Proxy servers

 Firewalls

▫ Improve security

Require HTTPS?

Browser Support

http://caniuse.com/#feat=http2

• http://tinyurl.com/mgbmq5c

• IIS 10 (Windows 10 and Windows Server 2016)

• Indicators
▫ Chrome and Firefox extensions

Implementations

• “HTTP/2 isn’t magic Web performance pixie dust; you can’t drop it in
and expect your page load times to decrease by 50%”
▫ Mark Nottingham

• Should help the most in high latency networks or lots of requests to
same hosts

• ~5-15% performance improvement (no changes to the site)

Expectations

• Bundling JavaScript and CSS files

• CSS Sprites

• Domain Sharding
▫ Using multiple host names so browsers uses more connections

• Inlining (Server Push)
▫ Data URIs, CSS, JavaScript

Performance Techniques to Avoid

• Golden Rules
▫ Make fewer HTTP requests

▫ Send as little as possible

▫ Send it as infrequently as possible

• Minification

• Compression

• Expirations

• CDN (Content Delivery Network)

Performance Techniques to Continue

• CDN (latency)

▫ All static resources (JavaScript, CSS, images, Web Fonts)
 Minified

 Bundled (HTTP 1.1) and non-bundled (HTTP/2)

 HTTPS

Strategy

• Optimize for each HTTP version
▫ Detect protocol version

• Options for detection
▫ Load balancer detect HTTP/2 and pass custom header

▫ UA sniffing

▫ Web Server support HTTP/2
 Upgrade web server (Windows Server 2016)

 Use HTTPS everywhere

Strategy (cont.)

• Ready for production

• HTTP/2 Major Features
▫ Binary framing layer

▫ Streams

▫ Fully multiplexed on single TCP connection

▫ Header Compression (HPACK)

▫ Server Push

Summary

• https://http2.github.io/

• https://httpwg.github.io/

• https://www.mnot.net/blog/

• “High Performance Browser Networking” by Ilya Grigorik
▫ Hpbn.co/http2

• “HTTP The Definitive Guide” by David Gourley and Brian Totty (HTTP 1.1)

Resources

• boedie@outlook.com

• @boedie

• weblogs.asp.net/boedie

Questions

