HTTP/2: What You Need to Know

Robert Boedigheimer
@boedie

About Me

 Web developer since 1995
 Pluralsight Author

» 37 Degree Black Belt, Tae Kwon Do
o ASP.NET MVP

* boedie@outlook.com
 @boedie
» weblogs.asp.net/boedie

HTTP 0.9

e 1991, http://tinyurl.com/50bj3z
e Sir Tim Berners-Lee, CERN

 Text based request/response

e GET (only method) and HTML (only response type)
* Closes connection after response

HTTP 1.0
e 1996, https://tools.ietf.org/html/rfc1945

* “Informational” RFC (not a standard)
= Compilation of best practices

e Request/response headers
* Any type of response (images, text file, etc.)

HTTP 1.1
e 1999, https://tools.ietf.org/html/rfc2616

Persistent Connections (Keep Alive)
Host Headers

Chunked transfer encoding

e 100 Continue Status

e HUGE success!

R RRRRRRRRRRRRRRRRRRERDRDDIRIIIREW
Fiddler

* Tracing tool built specifically for HTTP
= Shows complete request and response

o Proxy
o http://fiddler2.com (free)

 Eric Lawrence (@ericlaw)

e .NET framework needs to support ALPN!! (need for HTTP/2)

Problems with HTTP 1.1

* Wasn’t designed for todays web pages
= 100+ requests and 2 MB+ for a single page! (Httparchive.org)

Requires multiple connections
* Head of Line Blocking

 Lack of prioritization

Verbose headers

Requires Multiple Connections (HTTP 1.1)

e Single active request/response on a given connection

* Most browsers use up to ~6 connections per host
o Uses resources

o Takes time to establish and be efficient
- 3 way handshake
* TCP Slow Start

R R RSB
Head of Line Blocking (HTTP 1.1)

* Serial request(s) and response(s)
= Slow response blocks all other requests and responses on that connection

o HTTP Pipelining
= Submit multiple requests simultaneously
= Not used

Lack of Prioritization (HTTP 1.1)

* No direct way to specify desired order of responses
* Browsers need to decide how to best use their limited number of
connections and what to request first
o CSS
o JavaScript
o [mages

Verbose Headers (HTTP 1.1)

 No header compression

* Repeated headers sent for multiple requests to same host
= Cookie

User-Agent

Accept-language

Accept-encoding

Referer

a

a

a

a

Bandwidth

 Measured in units of bits
per seconds (bps)

e Relatively easy to add more

Latency

e Measured in milliseconds (ms)

» Time takes for packet to get to destination
= Propagation
= Transmission
o Processing

» Extremely difficult to improve, try to avoid!

Latency vs Bandwidth impact on Page Load Time

35001
3000 1
2500 1
2000 1
1500 1
1000 -

Page Load Time as bandwidth increases

Single digit % perf

» improvement after
5 Mbps

Page Load Time (ms)

TMbps ~ 2Mbps ~ 3Mbps 4Mbps SMbps 6Mbps 7Mbps 8Mbps 9Mbps 10 Mbps

3500 1
3000 1
2500 1
2000 1
1500 1
1000 -

Page Load Time as latency decreases

Linear improvement
in page load time!

Page Load Time (ms)

200ms 180ms 160ms 140ms 120ms 100 ms 80 ms 60 ms 40 ms 20 ms

http://tinyurl.com/omyuh3x, llya Grigorik

“Bandwidth Doesn’t Matter Much” - http://tinyurl.com/btgpclr

R RRRRRRRRRRRRRRRRRRRRRRDDDRRRIDIRREE=W
SPDY

e 2009, Experimental...
e http://tinyurl.com/3nh7rto

* Modifies how requests and responses are sent over the wire
e Required HTTPS

e Features
= Single connection
= Header compression
o Request prioritization
= Server Push

HTTP/2 Process

e |[ETF (Internet Engineering Task Force) — NOT W3C
o http://www.ietf.org/

« HTTP Working Group — HTTPbis
o https://httpwg.github.io/
0 2012
o |nitially based on SPDY

e« HTTP/2 - May 2015, https://tools.ietf.org/html/rfc7540
e HPACK - May 2015, https://tools.ietf.org/html/rfc7541

E———|
HTTP/2 Goals

 Minimize impact of latency
* Avoid head of line blocking
* Use a single connection (per host)

 Keep HTTP 1.1 semantics!
o Methods, status, headers

« DON’T NEED TO CHANGE APPLICATION CODE!!

o Should remove some current workarounds...

HTTP/2 Major Features

e Binary framing layer
e Streams
= Prioritization and dependencies
e Fully multiplexed on single TCP connection
 Header Compression (HPACK)
o Server Push

Binary Framing Layer

* Previously text based protocol
= Very easy to review and troubleshoot

* Binary protocols are much easier to parse, less error prone
* Need tool support!

* Frames
o Header
o Data

O

Streams)
e Single request/response
» Bidirectional series of frames v

= Order of frames is significant c

o Integer identifier

y 1

 Client “priority hints” E B

= Dependencies

= Weights /

y v

= Can be updated at any point D A

e ——
Single TCP Connection (per host)

e HTTP 1.1 browsers use ~6 connections
per host
= Serial requests and responses

= Need to decide which requests to make
first (HOL blocking)

* Multiplexing of request and response
frames from various streams

e Uses less resources, more efficient

Client

R RRRRRRRRERRRRRREREREEBEEERDRERRRRRRIY
Header Compression (HPACK) o

e +
| Index | Header Name | Headesr Valus |
- e e +
| 1 | zaunthority [|
. | 2 | rmethed | GET |
e https://tools.ietf.org/html/rfc7541 51 smethed | zost |
| 5 | ;path | findex.html |
| & | s3cheme | http |
. | 7 | s3cheme | https |
e Techniques |5 | iscaces | Zos |
| 10 | =3tatus | 206 |
o Index value for common headers/values 1L | sezatas | so |
= Indexed list of previously sent headers h] e o |
. | 15 | accept-charset |
= Huffman encoding to compress a value | 16 | accept-encoding | gzip, deflace |
| 17 | accept-language | |
| 1B | accEEt—rangesg |
| 19 | accept | |
. Z0 aocess—-controel-allew-origin
 Static table |21 | age = |
| 22 | allow | |
= Predefined common headers (values) |22 | aushomization | |
| Z5 | content-dispcsiticon |
| 28 | content-encoding |
| 27 | content-language |
° | 28 | content-length |
o Dynamlc table | 289 | content—locgtion | |
| 30 | content-range |

o Maximum size

Header Compression (HPACK) (cont.)

:method GET 2
:scheme HTTP 6
:path / 4
:user-agent ...Edge/12.10240 =) 58 Edge/12.10240
:accept-encoding gzip, deflate 16
host twitter.com 38 twitter.com
:accept-language en-US 17 en-US
:rjb-hdr 14534 63 rib-hdr

64 14534

e Future requests the compressed values would not be sent if the same

Server Push

e Server can anticipate what client will need next
= How?
e Same origin restrictions

* “Better Inlining”
= Resources are cacheable
= No added page weight
= Client can reject (RST_STREAM)

e Experimental...

Require HTTPS?

e NOT required in HTTP/2 RFC
o TLS 1.2+
= Blacklist of cipher suites

* Most browsers will only implement with HTTPS

= Avoid problems with new protocol and “middleboxes”
* Proxy servers
* Firewalls

o [mprove security

Browser Support

* Android * Chrome for

& *
IE Edge Firefox Chrome Safari Opera i05 Safari Opera Mini Browser Android

2

3
&

=

b
Ney

http://caniuse.com/#feat=http2

Implementations
e http://tinyurl.com/mgbmaq5c

* [IS 10 (Windows 10 and Windows Server 2016)

* Indicators $5-m =

= Chrome and Firefox extensions :Hﬁp_a’z-enahled{hzj

$ 3¢ B =

S5PDY-enabled(spdy/3.1)

Expectations

e “HTTP/2 isn’t magic Web performance pixie dust; you can’t drop it in
and expect your page load times to decrease by 50%”
= Mark Nottingham

e Should help the most in high latency networks or lots of requests to
same hosts

» ~¥5-15% performance improvement (no changes to the site)

Performance Techniques to Avoid

* Bundling JavaScript and CSS files
e CSS Sprites
 Domain Sharding
= Using multiple host names so browsers uses more connections
* Inlining (Server Push)
o Data URIs, CSS, JavaScript

Performance Techniques to Continue

* Golden Rules
= Make fewer HTTP requests
= Send as little as possible
= Send it as infrequently as possible

* Minification

e Compression

e Expirations

* CDN (Content Delivery Network)

Strategy
e CDN (latency)

= All static resources (JavaScript, CSS, images, Web Fonts)
* Minified
* Bundled (HTTP 1.1) and non-bundled (HTTP/2)
© HTTPS

#5oftware: Microsoft Internet Information Services 18.8
#ersion: 1.8

#Date: 2015-87-19 83:25:41

#Fields: date time s-ip cs-method cs-uri-stem cs-uri-query s-port cs-username c-ip cs-version cs(User-Agent) cs((
2015-87-19 83:25:41 160.72.138.44 GET / - 80 - 216.254.232.2080 HTTP/1.1 Mozilla/5.8+(Windows+NT+6.3;+W0WE4)+Apple
2815-87-19 83:25:41 1808.72.138.44 GET /secure/images/FlagBridge.]PG - 443 - 216.254.232.280 HTTP/2.8 Mozilla/5.84

2815-87-1

9 B4:98:22 10@.72.138.44 GET / - 80 - 216.254.232.200 HTTP/1.1 Mozilla/5.8+(Windows+NT+6.3;+WOW64 ;+rv:39.8)+Gecko/201001081+Firefox/39.0
2815-87-19 84:8

122 188.72.138_44 GET /secure/images/FlagBridge.JPG - 443 - 216.254.232.200 HTTP/2.8 Mozilla/5.0+(Windows+NT+6.3;+WOWEL ;+rv:39.8)-

oa oa

Strategy (cont.)

e Optimize for each HTTP version
o Detect protocol version

* Options for detection
= Load balancer detect HTTP/2 and pass custom header
= UA sniffing
= Web Server support HTTP/2

- Upgrade web server (Windows Server 2016)
- Use HTTPS everywhere

Summary

e Ready for production

e HTTP/2 Major Features
= Binary framing layer
Streams
Fully multiplexed on single TCP connection
Header Compression (HPACK)
Server Push

a

a

a

a

Resources

e https://http2.github.io/
e https://httpwg.github.io/
e https://www.mnot.net/blog/

“High Performance Browser Networking” by llya Grigorik
= Hpbn.co/http2
“HTTP The Definitive Guide” by David Gourley and Brian Totty (HTTP 1.1)

Questions

e boedie@outlook.com
e @boedie
« weblogs.asp.net/boedie

